

Safety, commissioning and performance tester of PV plants Page 1 of 6

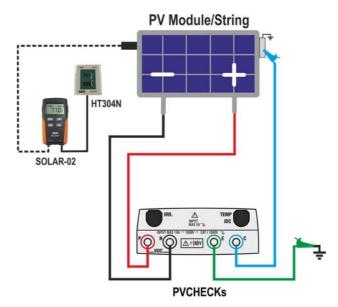
The multifunction instrument PVCHECKs performs prompt and safe electrical checks required for a PV system (DC section) and controls of the functionality of modules / strings in accordance with IEC/EN62446 guidelines.

PVCHECKs: safety checks

PVCHECKs verifies continuity of protective conductors (and associated connections) and measures insulation resistance of the active conductors on a module, a string, or a photovoltaic field in accordance with IEC/EN62446 guidelines, so avoiding to use any external switch to short-circuit positive and negative terminals.

Direct measurement of insulation resistance on a PV Field not connected to ground

Rel. 2.06 - 09/10/15



Safety, commissioning and performance tester of PV plants Page 2 of 6

PVCHECKs: functionality checks

PVCHECKs verifies functionality of a PV string in accordance with the IEC/EN62446 guidelines by measuring open circuit voltage and short-circuit current under operating conditions **up to 15A** and extrapolating the results referred to the STC (by measuring the solar radiation). Finally, it displays measurements as well as comparison with the PV strings previously tested.

Test IVCK – Automatic measurement of Voc, Isc + Insulation + Continuity on a PV Module/String without irradiance measurement

Test IVCK – Automatic measurement of Voc, Isc + Insulation + Continuity on a PV Module/String with irradiance measurement with optional accessories SOLAR-02 and HT304N

PVCHECKs: performance checks

PVCHECKs analyses the performance of a PV array (DC) under the operating conditions (connected to the inverter) displaying the generated power and the efficiency of the PV plant in accordance with IEC/EN62446.

Rel. 2.06 - 09/10/15

Safety, commissioning and performance tester of PV plants

Page 3 of 6

2. ELECTRICAL SPECIFICATIONS

Accuracy is calculated as ± [% readings + (no. of digits) * resolution] at 23°C ± 5°C, relative humidity <80%HR

2.1. PERFORMANCE TEST

DC Voltage		
Range (V)	Resolution (V)	Uncertainty
5.0 ÷ 199.9	0.1	(1.0) rda (2dat)
200.0 ÷ 999.9	0.5	\pm (1.0%rdg + 2dgt)

DC current (by mean external clamp)		
Range (mV)	Resolution (mV)	Uncertainty
-1100 ÷ -5	0.1	$\pm (0.5\%$ rda $\pm 0.6m)()$
5 ÷ 1100	0.1	\pm (0.5%rdg + 0.6mV)

DC current is always positive ;DC current zeroed if the related voltage value is < 5mV

FS DC clamp [A]	Resolution [A]	Minimum read value [A]
1< FS ≤ 10	0.001	0.05
10< FS ≤ 100	0.01	0.5
100< FS ≤ 1000	0.1	5

DC Power (Vmeas > 150)	/)		
Clamp FS (A)	Range (W])	Resolution (W)	Uncertainty
1< FS ≤ 10	0.000k ÷ 9.999k	0.001k	$\pm (1.5\%$ rdg + 3dgt)
10< FS ≤ 100	0.00k ÷ 99.99k	0.01k	(Imeas < 10%FS) ±(1.5%rdg)
$100 < FS \le 1000$	0.0k ÷ 999.9k	0.1k	(Imeas ≥ 10%FS)

Irradiance (by mean I	HT304N)	
Range (mV)	Resolution (mV)	Uncertainty
1 ÷ 40.0	0.02	±(1.0%rdg + 0.1mV)

Temperature (by mean PT300N)		
Range (°C)	Resolution (°C)	Uncertainty
-20.0 ÷ 100.0	0.1	± (1.0%rdg +1°C)

Safety, commissioning and performance tester of PV plants

Page 4 of 6

2.2. FUNCTIONALITY TEST

DC Voltage @ OPC		
Range (V)	Resolution (V)	Uncertainty
5.0 ÷ 199.9	0.1	(1.0)/rda (2dat)
200 ÷ 999	1	\pm (1.0%rdg+2dgt)

Minimum VPN voltage to start the test: 15V

DC Current @ OPC		
Range (A)	Resolution (A)	Uncertainty
0.10 ÷ 15.00	0.01	±(1.0%rdg+2dgt)

DC Voltage @ STC		
Range (V)	Resolution (V)	Uncertainty
5.0 ÷ 199.9	0.1	(4.00/rdg.)
200 ÷ 999	1	\pm (4.0%rdg+2dgt)

DC Current @ STC		
Range (A)	Resolution (A)	Uncertainty
0.10 ÷ 15.00	0.01	±(4.0%rdg+2dgt)

Irradiance (by mean HT304N		
Range (mV)	Resolution (mV)	Uncertainty
1 ÷ 40.0	0.02	±(1.0%rdg + 0.1mV)

Temperature (by mean PT300N)			
Range (°C)	Resolution (°C)	Uncertainty	
-20.0 ÷ 100.0	0.1	± (1.0%rdg +1°C)	

Safety, commissioning and performance tester of PV plants

Page 5 of 6

2.3. SAFETY TEST

Continuity Test (LOWΩ)					
Range [Ω]	Resolution [Ω]	Uncertainty			
0.00 ÷ 1.99	0.01				
2.0 ÷ 19.9	0.1	±(2.0%rdg + 2dgt)			
20 ÷ 199	1				

Test current >200mA DC up to 2 Ω (test leads included), Resolution 1mA, Uncertainty ±(5.0%rdg + 5dgt) Open loop voltage 4 < V₀ < 10V

Insulation Test (M Ω) – Mode TIMER					
Test voltage [V]	Range [MΩ]	Resolution [MΩ]	Uncertainty		
	0.01 ÷ 1.99	0.01			
250, 500, 1000	2.0 ÷ 19.9	0.1	\pm (5.0%rdg+ 5dgt)		
	20 ÷ 199	1			
Open voltage: Short circuit current:	< 1.25 * nominal test voltage <15mA (peak) for all test volt				

Generated voltage Test current

Resolution 1V, uncertainty ±(5.0%rdg + 5dgt) @ Rmis> 0.5% FS

> 1mA with load = $1k\Omega x$ Vnom

Insulation Test (M Ω) – Mode FIELD (*), STRING (**)						
Test voltage [V]	Range [MΩ]	Resolution [MΩ]	Uncertainty (***)			
250	0.1 ÷ 1.9	0.1				
250	2 ÷ 99	1				
500	0.1 ÷ 1.9	0.1	±(20.0%rdg+ 5dgt)			
500	2 ÷ 99	1				
1000	0.1 ÷ 1.9	0.1				
1000	2 ÷ 99	1				
(*) For FIELD mode	mode if VPN >1V the minimum voltage VEP and VEN for the calculation of Ri(+) and Ri(-) is 1V					

(*) For FIELD mode (**) For STRING mode Open voltage Short circuit current Generated voltage Rated current measured

minimum VPN voltage to start the test: 15V

<1.25 x nominal test voltage

< 15mA (peak) for each test voltage

resolution 1V, accuracy ±(5.0%reading + 5digits) @ Rmis> 0.5% FS

asured > 1mA with $1k\Omega$ @ Vnom

add 5 dgts to the accuracy if
$$\frac{\max\{R^+, R^-\}}{\min\{R^+, R^-\}} \ge 100$$

(***) For FIELD mode:

1.800.561.8187

Rel. 2.06 - 09/10/15

Safety, commissioning and performance tester of PV plants

Page 6 of 6

3. GENERAL SPECIFICATIONS

DISPL	AY AN	ID MEN	IORY:

Features: Memory: 128x128pxl custom LCD with backlight max 999 test

POWER SUPPLY:

PVCHECK internal power supply:6x1.4Battery life:apprSOLAR-02 power supply:4x1.4SOLAR-02 max recording time (@ IP=5s):appr

6x1.5V alkaline batteries type LR6, AA, AM3, MN 1500 approx.120 hours (DC efficiency test) 4x1.5V alkaline batteries type AAA LR03 approx. 1.5h

OUTPUT INTERFACE

PC communication port: Interface with SOLAR-02:

optical/USB wireless RF communication (max distance 1m)

MECHANICAL FEATURES

Size (L x W x H): Weight (batteries included): 235 x 165 x 75mm 1.2kg

ENVIRONMENTAL CONDITIONS:

GENERAL REFERENCE STANDARDS:

Safety: EMC: Safety of measurement accessories: Measurements:

Insulation: Pollution degree: Overvoltage category:

Max height of use:

IEC/EN61010-1 IEC/EN61326-1 IEC/EN61010-031 IEC/EN62446 (PV performance, IVCK) IEC/EN 61557-1, 2, -4 (LOW Ω , M Ω)) double insulation 2 CAT III 300V to ground Max 1000V DC among inputs P, N, E, C 2000m

This instrument complies with the requirements of the European Low Voltage Directives 2006/95/EC (LVD) and EMC 2004/108/EC

This instrument satisfies the requirements of 2011/65/EU (RoHS) directive and 2012/19/EU (WEEE) directive

